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ABSTRACT 

This design project dealt with a blending problem in the format of a multivariable, 

constrained, nonlinear optimization problem, where a typical application of this 

problem may be an incinerator that burns waste. The incinerator accepts a blend of 

several sources, each of which has particular characteristics in terms of thermal output. 

Should the different sources be inappropriately blended, it could result in a safety 

hazard for the entire incinerator. The problem is to determine the appropriate 

proportions so that the maximum value of thermal output for the blend is minimized. 

The maximum value will be approximated by the mean of the blend plus a selected 

number standard deviations. The first phase of the project was a brief study of similar 

blending problems by searching relevant literature. It was found that very little has 

been done on this problem in terms of computer implementation for industry. 

Secondly, various possible methods for solving the blending problem were 

considered. Among these methods were classical calculus, gradient searches, 

exhaustive searches, and iterative direct searching. An extension of an iterative direct 

search is a Monte Carlo simulation, where a statistical approach is taken. The Monte 

Carlo search method is based on the theory that the optimization problem has a 

distribution of answers and that a random sample of those answers will yield an 

answer in the lower tail to within a certain degree of "accuracy." Then, the feasible 

region of answers will be halved and another random sample of possible answers will 

be taken. The search proceeds in this manner, taking random samples from an ever- 

decreasing region of feasible answers. The method focuses on the optimal answer. 

The third aspect of the project was implementing the Monte Carlo method in 

computer code. The program was written in Visual Basic 4.0 for Windows in order to 

achieve user-friendliness and a graphical user interface. The program contains both an 

optimization function and a "What-if" analysis. A "User's Manual" was also 

documented to assist the user. 



M.I.S.E. Design Project Proposal 

Essentially, my design project will consist of a blending problem. A typical 
application of this problem to the industrial domain would be an incinerator that burns 
waste. The incinerator accepts material from several sources, each of which has 
particular characteristics in terms of thermal output. The thermal output of each source 
is assumed to be normally distributed, having its own mean and standard deviation. 
The sources will be blended to create the final burning material. Should the different 
sources be inappropriately blended, it could result in a safety hazard for the entire 
incinerator. The problem is to determine the appropriate proportions so that the 
maximum value of thermal output for the blend is minimized. The maximum value 
will be approximated by the mean of the blend added to a selected number standard 
deviations. For example, an addition of three standard deviations results in a 0.00135 
probability that the maximum value will be exceeded. As the number of sources 
increases, the problem quickly becomes more complex. The goal of the project is to 
produce a working model computer program that will allow user interface so that it 
will calculate the appropriate proportions of each source to produce an optimally safe 
blend for the incinerator. Additionally, the program will allow the user to play "what- 
if" games in order to test different blending situations. This feature will be 
advantageous when the blending has constraints. 

The first phase of my project will be a brief study of similar blending problems. In 
talking with my advisor, Dr. Hool, it was discovered that very little has been done on 
this problem in terms of computer implementation for industry. This phase is an 
attempt to determine what is currently available in this field. 

Secondly, a mathematical analysis will be done on the problem to determine the best 
solutions to the problems, as the number of sources increases. An initial hypothesis is 
that search methods for optimization will need to be utilized since a closed-form 
solution is impossible and an exhaustive computer search will be impractical. 
Additionally, the general program requirements and options will be determined. 

The third aspect of the project will be implementing the working solution in 
computer code. The initial proposal is to write the program in Visual Basic in order to 
achieve user-friendliness and graphical user interface. After the program is 
flowcharted, the coding will be done. Naturally, testing and de-bugging will also be 
required. Optionally, a short "User's Guide" will be documented. 

Finally, the write-up will be completed in order to ensure thorough documentation. 
As of now, the schedule for completion date is June 10, 1997. This will allow almost 
three months for the review, oral examination, processing of results, and payment of 
the graduation fee well before the deadline two-weeks prior to graduation. 



PROBLEM ORIGIN 

This problem originated from a real-world problem involving hazardous waste 

disposal through burning of hazardous waste material in an incinerator. Various 

sources of hazardous waste material are inputs to the incinerator, and the sources are 

blended into a mixture prior to insertion into the incinerator. Each source contains a 

distribution of Btu (British thermal unit) content (i.e. the Btu content is not a single 

value for a source). The incinerator cannot be safely operated if the maximum Btu of a 

blended input exceeds 800 Btu (the "safe limit"). The problem is to determine how to 

blend the sources in order to avoid burning material that has a maximum Btu value 

exceeding the "safe limit" of the incinerator. Specifically, the problem is to determine 

the proportion of each source to put into a blend so that there is a small probability (e.g. 

0.001) that the maximum Btu will exceed the "safe limit." 

The blend can be modeled as a linear combination of source Btu's. Each source has 

its own distribution of Btu content. The mean Btu of source i, i = 1, 2, ... , n, is |i,, and 

the variance of Btu content of source i is a,2. If the proportion of source i that is blended 

into the final mix is h , then the Btu content of the blend is a linear combination, B, of 

the sources. If X; is the Btu content of source i, where X; is a random variable, then 

i 

and B has a mean 

i 

and a variance 

<^E*fo2 

if the sources are independent. The independence assumption is easily met in the 

problem. If the Btu content of each source is normally distributed, then B is also 

normally distributed. If not all of the sources have normally distributed Btu's, then B 

may still be approximately normally distributed if enough sources are blended (as a 

result of the Central Limit Theorem). 



If B can be assumed to be at least approximately normally distributed, then for any 

arbitrarily selected probability, p, where p will be small, a corresponding "maximum" 

value for B, defined as MP, can be written as 

where ZP = standardized normal distribution value corresponding to the 

probability p. 

MP is the (lOO)pth percentile of B, and is the value of B beyond which only (100)p% of 

the blend's Btu's will lie. 

If the "safe limit" of the incinerator is S, then the blending problem becomes one of 

selecting the k such that 

Mp<S 

subject to the constraints 

i=i 

0 <£,<&,•    Vi = l,—,n 

where h = 1 are default values. 

In particular, the "ultimate" solution of the blending problem requires determination 

of min(Mp) = MP*. If MP* < S, then the blend satisfies the incinerator's "safe limit." Of 

course, there are two additional situations that might occur, namely 

1. Mp* > S, in which case a blend cannot be created which may be "safely" 

processed by the incinerator. 

2. There are multiple Mp (corresponding to various k combinations) for which 

MP<S. 

The blending problem specific to this project, and any blending problem of similar 

character, is a multivariable constrained nonlinear optimization problem. The decision 

variables are the k, and the term 



$& 

creates the nonlinearity of the objective function MP. Further, several variations on the 

problem can be created such as maximizing a minimum value of B such that the 

minimum value exceeds a lower "safe limit." 

PROBLEM STATEMENT 

The objective of this study was to select an appropriate method to solve the blending 

problem, and then produce a working-model computer program to execute the selected 

method for solving the problem. The computer program was written in Visual Basic 4.0 

for Windows and performs two functions, namely 

1. Determines the optimal h (called h*) to minimize Mp.   The program can 

determine if the blend meets the "safe limit" (Mp* < S). 

2. Allows the user to conduct "what-if" analyses for user-supplied h values in 

order to determine if the resulting blend will satisfy MP<S. 

Because the number of sources will be at least two and perhaps as many as ten, the 

resulting problem is the following multivariable nonlinear programming problem: 

min X*,M+zJl>;
2af 

i=i 

subject to 

2>,=i 
i=i 

0 <k-, <bt    \/i = \,---,n 

LITERATURE SEARCH 

In order to evaluate what is currently available concerning blending problems, a 

search of relevant literature was conducted. The problem being investigated is a 

multivariable constrained nonlinear optimization problem.   Because the problem is 



nonlinear, linear programming is not a viable option. Most nonlinear optimization 

problems concern economics or inventory problems. The most preferred method of 

solving nonlinear optimization problems is by using a gradient search procedure, 

which employs the partial derivatives of the objective function. Optimization methods 

will be more fully discussed in the next section. 

Nicholson (1) comments that in the industrial world a gap has been formed between 

the people who develop optimization methods and those who use them. Nicholson's 

premise is that the most accurate optimization methods will be useless unless they are, 

if not theoretically comprehended, at least pragmatically understood by the 

practitioner. An objective of this project was to implement a powerful and perhaps 

complex optimization method and make it useful so that a layman can easily solve 

blending problems. 

In examining Nicholson's second volume of applications, along with other industrial 

mixing books, it was found that most mixing problems deal with complex mixing 

formulas, and tend toward chemistry problems. Virtually no material was found 

relating directly to solving blending problems. 

A helpful resource that was discovered was Experiments with Mixtures by Cornell. 

However, Cornell's approach toward the mixing problem adopts design of experiments 

and response surface methodology. The purpose of designing a complex experiment is 

to construct an equation that adequately describes the response surface (8). Once the 

response surface is estimated, it is then optimized by selecting the appropriate levels of 

the factors. In this project, the response surface is assumed to be known exactly and the 

real problem lies in selecting the levels of the factors (in this case, h). 

POSSIBLE SOLUTION ALGORITHMS 

Multivariable constrained nonlinear optimization problems can be solved using 

various methods. Several methods that were considered are briefly described below. 

Note that use of a linear approximation of a nonlinear objective function is less accurate 

and was thus not considered. 



1. Analytical (Calculus) Method 

One method to solve a nonlinear optimization problem is the classical calculus 

method. This involves, in a multivariable problem, determining the first partial 

derivative of the objective function (MP in this case) with respect to each variable (i.e., 

h). Since the constraint Zfc = 1 is used in the blending problem, only (n-1) partial 

derivatives must be determined. Each partial derivative must be set equal to zero, 

resulting in a system of equations, and the h then solved for to produce a global or local 

maximum, minimum, or a saddle point solution. This is not easy in the general case, 

and in particular for the blending problem. For the blending problem each partial 

derivative is a nonlinear function, and solutions for the h could require a difficult 

search process. A general formula for the (n-1) first partial derivatives is shown in 

Appendix 1, and an example for n = 2 sources is shown in Appendix 2. Since solution 

via the classical calculus method is complex, this method can seldom be used 

satisfactorily on even unconstrained problems (Nicholson 69). In addition, determining 

whether extreme points are local minima, maxima, or saddle points can be difficult. 

2. Gradient Search 

When the system of equations obtained by setting the partial derivatives equal to 

zero cannot be solved analytically, then a numerical search procedure should be used 

(Hillier 514-5). Using the objective function, Mp, the goal is to reach a point eventually 

where all of its partial derivatives are (essentially) zero (Hillier 515). The gradient, a 

vector of the (n-1) partial derivatives, can be calculated and used to determine the 

direction of the search. However, a gradient search procedure itself must employ 

another search procedure to determine how far to advance, at each step, in the direction 

of the gradient. Therefore, this method is somewhat complex and not the best method 

to use when attempting to optimize with a computer. An example of this is shown in 

Appendix 3. 



3. Failure of Calculus - Direct Search 

This type of search method differs from the previous method because direct search 

procedures work directly with the objective function and avoid the difficulties of 

calculating the gradients of functions (Nicholson 84). Advantages of this type of search 

method are that not only is it less complicated than the gradient search, but it also can 

readily cope with constraints (Nicholson 84). However, a disadvantage is that with an 

increasing number of variables (sources), the required time for computation may 

become large (Nicholson 84). This search method uses a base point and perturbations 

to slowly move toward the optimal point. An example of this procedure is included in 

Appendix 4. 

4. Exhaustive Search 

Since the previous methods are somewhat complex, a more computer-adaptable 

method, such as an exhaustive search, was considered. This method employs an 

examination of all possible combinations of k values, and then identifies the set(s) of k 

values that will optimize the objective function. Depending on the amount of accuracy 

desired in a solution, the number of calculations required to arrive at a solution can be 

easily determined. For example, if ± 1% accuracy is desired (i.e., k = 0.00, 0.01, ..., 

1.00), then each source (assuming a full range of 0.00 - 1.00) would have 101 different 

possible k values. The following table shows the number of combinations that must be 

examined for an exhaustive analysis (assuming n-1 independent sources): 

Number of Sources Possible Solutions 

2 101 

3 10,201 

4 1,030, 301 

9 1.08 x 10 K 

10 1.09 x 10 18 



However, should ± 0.01% accuracy be desired, each source will have 10,001 possible 

values. The number of feasible solutions then increases considerably, as shown in the 

following table (assuming n-1 independent sources): 

Number of Sources Possible Solutions 

2 10,001 

3 100, 020,001 

4 1.00 x 10 12 

9 1.00 x 1032 

10 1.00 x 1036 

This method of searching has the disadvantage of being computationally intensive, 

even for a fast computer. However, there are several advantages of this method. First, 

it is simple to execute. A computer simply uses loops to search over the entire range for 

each variable, comparing the current solution to the currently optimal solution. 

Second, this method guarantees optimality within a certain limit of accuracy. Because 

every possible combination is considered, optimality can be assured. It is the 

tremendous speed and error-free calculation ability of the computer that this 

exhaustive search method seeks to exploit (Conley 5). 

5. Iterative Search (Strategic Guessing) 

Although the exhaustive search will work in all cases as well as guarantee optimality, 

it must be admitted that much of the computational effort amounts to sheer waste. 

Many of the calculations can quickly be discarded as non-optimal. However, is there a 

way for the computer to do this? Specifically, if an algorithm can quickly eliminate a 

number of answers, then very large problems can be solved with substantially fewer 

calculations. For example, as indicated earlier, an exhaustive search for ten variables 

ranging from 0-100% at 0.01% increments would require about 1036 calculations, 

disregarding the comparisons. However, what if an algorithm was able to make a few 

10 



"smart" decisions and reduce the number of calculations to 1010 ?   This concept of 

looking only at strategic points and using those values to make decisions is the driving 

force behind design of experiments (DOE). However, DOE can be used to adequately 

understand the response surface, then assumes that optimization will easily follow. For 

this project, the response surface, Mp, is known and its optimization is the problem. 

Nevertheless, the experimentation methodology may be used to strategically locate the 

optimal point. Cornell explains that a mixture problem with n ingredients results in a 

factor space called a simplex. The geometric description of the factor space containing 

the n components consists of all points on or inside the boundaries (vertices, edges, 

faces, etc.) of a regular (n-l)-dimensional simplex (Cornell 6).   Three sources (n = 3) 

result in a simplex factor space that is an equilateral triangle, and for n = 4 the simplex 

is a tetrahedron (Cornell 6).    Therefore, the next step is to determine a way to 

selectively examine points in the simplex; one possible approach is to evenly divide the 

simplex, taking observations throughout.    An ordered arrangement consisting of a 

uniformly spaced distribution of points on a simplex is known as a lattice (Cornell 22). 

A lattice design can be more accurate as the number of points in the simplex is 

increased. A lattice design is said to have degree m where the points in the simplex are 

spread such that the values of each component are 

1   2 
k{ =0— ,-,•••, 1 

m m 

if 0 < k < 1. Thus, a lattice design may be categorized by its degree and by the number 

of components in the mixture. The number of selected points in a {n,m} simplex-lattice 

design will be 

(rc+m-l)! 
m'.(n-l)! ' 

For example, a {3,2} design will have 6 points, while a {10,4} design will have 715 

points.   A table showing the total number of points for a \n,m) lattice is shown in 

Appendix 5.   Then, a further lattice could be used on a,selected region of the first 

simplex, so that the optimal point is slowly brought to focus. An example with n = 2 is 

shown in Appendix 6. 

11 



6. Iterative Search (Monte Carlo Simulation) 

This was the method selected for use with the blending problem. Instead of 

attempting to equally divide the simplex into regions as is done with an iterative search 

method, a Monte Carlo simulation method examines a random sample of points inside 

the simplex (Conley 20). Based on the optimal value in the sample, the simplex region 

can be halved and another random sample of points can be taken. The computer can 

select the optimal sample value at each iteration to be the centroid for the next 

iteration's simplex, halving the simplex region as well. This technique employs 

statistical probability and then relies on the massive speed of the computer to 

determine an optimal solution. 

As with any optimization technique, both advantages and disadvantages exist. A 

primary advantage is that the method uses far fewer calculations than an exhaustive 

search. Conley stated (as of 1981) that a computer, using Monte Carlo techniques, 

found a true optimum solution to a problem with 1030 feasible solutions in about a 

minute on a medium-sized computer, where an exhaustive search technique on a 

problem of this scale would take the computer about 32 million trillion years (Conley 

20). Other advantages include the ability to use an accurate (nonlinear) model with no 

concern for linearity, continuity, or differentiability assumptions. One disadvantage is 

that optimality cannot be assured because the method is based on randomness, and the 

method could conceivably miss an optimal point. However, the probability that a 

Monte Carlo solution investigating 1,000,000 combinations will come within 0.00001 of 

the optimal solution is 1 - 0.999991'000'000 = 0.9999546. Therefore, the probability is 

almost overwhelming that at least a near optimum solution will be found. 

The basis for this method is that all feasible solutions map a distribution of objective 

function values (see Appendix 7). Most values tend toward the objective function 

mean, and the optimal solution (to the specific problem of this project, Mp) is at the left 

tail of the distribution. At each iteration of the simulation, a specified number of 

samples, say 4000, are selected. The probability that one random sample will not 

produce a value in the lower 0.01 tail of the Mp distribution is 0.99. However, the 

probability that none of the 4000 samples will produce a value in the lower 0.01 tail of 
V 

12 



the distribution is 0.99 4000, which is about 3.5 x 10 -18. With each iteration, the feasible 

region is made smaller and smaller, so that another 4000 samples will most likely yield 

a solution in an even lower tail of the distribution, say 0.0001. After several iterations 

(< 10), the optimal solution is virtually guaranteed. Therefore the optimal solution will 

most likely be found after the computer evaluates a mere 4000 x 10 = 40,000 possible 

solutions, which is a drastic reduction in calculations compared to the exhaustive 

search method. The only situation that would disrupt the Monte Carlo approach 

would be a distribution (in an optimization problem) that had one isolated optimal 

solution that was separate from the remainder of the solutions (Conley 189, see 

Appendix 8). 

The optimization procedure works as follows: 

1. Assign the initial optimal solution by letting fc = 1/n for i = 1, 2, ... , n, where 

Ifc = 1 and 0 < fc < &,• . Call this solution fc* Its corresponding objective 

function value, Mp, will be Mp*. 

2. Set iteration number,;' = 1. 

A. Randomly generate 4000 samples, where for sample s, s = 1, 2, ... , 

4000, the fc are randomly selected on the interval 0 < fc < h and where 

Efc = 1. Compute the corresponding Mp value for each sample. 

B. For each sample s = 1, 2, ... , 4000, compare MP with MP*. If MP < MP*, 

then replace Mp* with Mp and let fc* = h. 

C. Using k*, i = 1, 2,... , n, as the centroid for source i, determine the new 

reduced range of each h for the next iteration where 

max (fc* - 2 -i -1, 0) < h < min (h* + 2 - i - \ h). 

3. For iterations / = 2,3,..., 10, use h* and Mp* from the previous iteration. 

A. Randomly generate 4000 samples, where for sample s, s = 1, 2, ... , 

4000, the ki are randomly selected on the interval 

max (h* - 2-i-1, 0) < h < min (fc* + 2-M, &,-) 

13 



obtained from the previous iteration, where Ua = 1 and a 

corresponding Mp is computed. 

B. For sample s = 1,2, ... , 4000, compare MP with MP*. If MP < M/, then 

replace Mp* with MP and let fc* = h 

C. Using fc*, i = 1, 2,..., n, as the centroid for source i, determine the new 

reduced range of each h for the next iteration where 

max (k* - 2-i-i, 0) < h < min (h* + 2-M, &,•) 

where / indicates the iteration just completed. 

D. Return to step 3 until 10 iterations have been completed. 

4.   The identified optimal solution is h*, with an objective function value of Mp*. 

For example, assume that the problem consists of three sources, that the optimal 

solution is 0.1, 0.3, and 0.6 for each source respectively, resulting in an' objective 

function value of 50, and that each source has bounds placed at 0.0 and 0.8: 

Step 1. The initial solution (fc*) would be set at 0.3333 for each source, with an 

objective function value of, say, Mp* = 62. 

Step 2 (A) The algorithm would generate the first sample of proportion values, 

say ki = 0.2289, k2 = 0.5372, and k3 = 0.2339, and (B) evaluate the objective function 

to be Mp = 63.87. Therefore, the second random sample would be generated and 

again compared to the initial optimal solution. Assume that after 4000 samples, 

the best solution thus far is h* = 0.1019, k2* = 0.2901, and k3* = 0.6080, with an 

objective function value of Mp* = 52.17. (C) This solution would form the basis 

for determining the new range of possible values. For iteration 1, the algorithm 

attempts to add/subtract 2"2 = 0.25 from each fc* value to obtain the new reduced 

range. The first source would now have a range of (max (0.1019 - 0.25, 0.00)) = 

0.00 and (min (0.1019 + 0.25, 0.8000)) = 0.3519, the second a range of 0.0401 - 

0.5401, and the third a range between 0.3580 - 0.8000. Thus, the second source 

has a full range of 0.5000 while the other two were limited by their bounds, 

resulting in smaller ranges. 

14 



Step 3 (A/B) Iteration 2 would then begin and another 4000 samples would be 

generated within this smaller range of h values. (C) Assume this time that after 

the 4000 additional samples, the best proportions found thus far are 0.1009, 

0.2987, and 0.6004, with an objective function value of MP* = 50.19. This solution 

would form the basis for determining the new range of possible values. For each 

source, the algorithm now attempts to add/subtract 2 -3 = 0.125 from each h* 

value to obtain the new reduced range. The first source would now have a range 

of 0.0000 - 0.2269, the second a range of 0.1737 - 0.4237, and the third a range of 

0.4754 - 0.7254. This time, the second and third sources have a maximum range 

of 0.25 while the first has a smaller range. (D) The second iteration would be 

complete and eight more iterations would follow, each taking 4000 samples from 

an ever-decreasing range. At iteration 10, the range for each of the sources would 

be 2 -9 = 1.91 x 10 -3. This means that 4000 random samples would be selected 

from this range on each of the h values, which would guarantee optimality with 

acceptable accuracy. 

Step 4 The optimal solution of k* = (0.1000, 0.3000, 0.6000) for i = 1, 2, 3, with an 

objective function value of MP* = 50.00000 is reported as the final answer. 

At each iteration, the feasible region is at least halved and most likely reduced much 

more. If; is the iteration number, where;' = 1, 2, ..., 10, and;' = 1 (first iteration), with 

kx* = 0.7 and the bounds 0.00 < h < 0.90, then for the next iteration (i.e.,;' = 2), 

max (0.7 - 2 -1 - \ 0.00) < kx < min (0.70 + 2 -1 - \ 0.90) 

max (0.7 - 0.25,0.00) < h < min (0.70 + 0.25, 0.90) 

max (0.45,0.00) < h < min (0.95,0.90) 

0.45 < fci < 0.90. 

Essentially, the procedure uses (n-l)-dimensional "rectangles" that search through 

the n dimensional space (always staying inside the constraints) until the rectangles 

focus on the optimal answer (Conley 229).   According to the laws of probability, the 

algorithm will quickly find the optimal solution. 

15 



The Monte Carlo method disregards classical optimization methods in favor of 

relying on the pure speed of the computer combined with the laws of probability. For 

any optimization problem of one hundred variables or less, Conley (245) recommends 

using this method to optimize a function. 

MONTE CARLO SEARCH COMPUTER PROGRAM 

The program has two options: 1) optimize a blend, and 2) user "What-if" analysis. 

The first option will allow the user to input the following values: 

1. Number of sources, n (selected from the range 2-10) 

2. For each source: 

A. Source mean, (a., 

B. Source variation: variance, a? or standard deviation, G; 

C. Source upper bound, h (1.00 = default value); (bn must remain at 1.00) 

3. "Safe limit," S (used for comparison) 

4. Probability p (proportion of actual blend output that will exceed "maximum" 

value, Mp*. The program will then determine the appropriate number of 

standard deviations, Zp, to add to the expected mean of the blend to 

correspond with this probability. Note that possible p values are: 0.25, 0.10, 

0.05,0.025, 0.01,0.005,0.0025,0.001,0.0001). 

The program will output: 

1. The expected output of the blend, [LB 

2. The standard deviation of the blend, CB 

3. The optimal minimum "max" value, Mp* 

4. A comparison of optimal and "Safe limit" (SAFE/UNSAFE) 

5. The corresponding fc,* for each source 

The second option of the program will be for user "What-if" analysis.   The user 

inputs will be: 

1. Number of sources, n (selected from the range 2-10) 

2. For each source: 
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A. Source mean, Ui 

B. Source variation: variance, d2 or standard deviation, G 

C. Proportion of the source, h, in the blend (in keeping with Xfc = 1) 

3.   "Safe limit" value, S 

The program will then give: 

1. The expected output value of the given blend, [iB 

2. The standard deviation of the blend, GB 

3. Proportion of the blend output, B, that will exceed the "Safe limit." 

VISUAL BASIC 4.0 

Microsoft's Visual Basic 4.0 for Windows was the programming language selected to 

code the computer program. "Visual Basic is an object-oriented/event-driven 

programming language that is easy enough for a nonprogrammer to use, yet 

sophisticated enough to be used by professional programmers" (Zak 5). Although 

Visual Basic is a relatively new language, several advantages that the language offers 

made this selection practical. Among the advantages are: 

• Visual Basic programs are run in a Windows environment, making the user 

interface simple, neat, and user-friendly 

• Visual Basic programs can be stored in an executable file (*.exe) so that any 

user with a Windows 95 operating system may run the program 

• Visual Basic allows the programmer to spend more time in coding the 

program details while user interface is virtually self-coded by the program 

itself. 

A Visual Basic program is structured around forms and objects. Forms are the 

different windows that will allow user interaction, and the objects are the various text 

boxes, drop menus, and click commands that appear on each form. Therefore the first 

step in Visual Basic programming is to develop the user interface in the framework of 

forms and objects. After this major step, instructions concerning each object on the 

form are given as code. 
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This program has four basic forms. The first form is the "Control Panel." From this 

form, the user may move to one of the major program functions or exit the program. 

The second major form is the "Optimization" form. This form contains the overall 

inputs and all outputs for the optimization problem. The third form is the "What-if" 

analysis form which contains overall inputs and all outputs for the "What-if" analysis. 

The last form actually contains a sub-form for each source. These sub-forms allow the 

user to input data specific to each blending source. 

In order to allow the reader and perhaps others who wish to expand on this project to 

more fully understand the program as a whole and the optimization procedure, 

pseudocode is given as Appendix 9. Furthermore, the actual code for the optimization 

of the blending problem with two sources is given as Appendix 10, while Appendix 11 

contains the code used in the "What-if" analysis for two sources. The reader will note 

that all Visual Basic 4.0 "comments" are preceded by an apostrophe (')• 

PROGRAM VALIDATION 

In order to verify whether Blend was properly optimizing proportions, nine sample 

problems (one for each n = 2,...,10) were optimized. Before optimizing with Blend, the 

problems were solved with LINGO, a nonlinear optimization software package. Each 

problem was run five times while comparing only the Mp* values, since it is true that 

the actual proportions can vary substantially while maintaining extremely similar Mp* 

values. From all 45 runs, the average deviation from the optimal answer was 0.66%. 

Of interest was the fact that most of the error came from one problem that Blend 

seemed to have more difficulty in optimizing, while no unique features of the problem 

could be established. Overall, Blend demonstrated a strong optimization potential; 

experimental results for problems where n = 3,7, and 10 are shown in Appendix 12. 
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APPENDIX 1 

General Formula Using (n-1) Partial Derivatives 



General Formula Using (n-1) Partial Derivatives 

For this derivation, assume: 

Source Proportion Mean Standard Deviation 

1 fa SiJUi ricn 

2 fa S2JU1 TzOi 

n-1 kn-l 
n-1 

Sn-lJUl Tn-lCTl 

n 
!=1 

SnJUl r„<Ti 

and where Si = ri = 1. Let the subscript B denote the blend. 

Blend Mean: 

f n-1      A 

V      ,=i    / 
•*nM 

A» = A[*I(* ""O^fe -*J+—+*»-l(J»-l -■S») + *»] 

^B=A 

n-1 

1=1 

Blend Standard Deviation: 

n-1      V 

a2 = kyxa\ + k\rla\ +• • •+^1r„
2_1cr1

2 +  1 - £ kt 
~2^2 
r«.°l 

n-1 / n-1      V 

v.      ,=1    y 1=1 

Now, define Mp = JUB + ZCTB 

M=H 
n-1 

Z*i($-0+5» 
i=l 

+ Z<7, 
n-1 /" n-1      "\ 

ZW+r.2 1-Z*. 
i=l N 1=1        ' 

2-lK 
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Taking the partial derivative results in (n-l) equations: 

= y"i(5y-5
n) + 7ö"i 

'n-l ( n-l      V 

1=1 

/'n-l Y\ 
Ikrf+lkfl-lrl+lrl 

M=l yy 

V/ = l,2,...,«-l 

= M(^-
5

«) 
+

 
ZO

'I V/ +7"«2 
n-l AA 

i=1 yy 

n-l /" «-1      A2 

1=1 ^    >•=!  y 

y/ = u...,/i-i 

^ 

^ 
= M(5;-*n) + Zö"l 

f fn-1 \N 

*//+%' I>, -1 
V ^,=1 yy 

n-l (        n-l      V 

1=1 V       ,=i     / 

-,-1/ 

V/ = l,2,...,«-l 

= M(5>-5«) + Zcri V/-'1.2 
NA 

v   ,=i  yy 

n-l n-l n-l n-l ^ 

2>.V+',2 1-2Z*I+ZZ*I*. 
1=1 1=1 i=l m=l 

v/ = i,2,...,«-i 
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APPENDIX 2 

Example of an Analytical Solution when n = 2 Sources 



Example of an Analytical Solution when n = 2 Sources 

Given 
Hi=50 ai=2 (j.2 = 40 02 = 6 

assume 
Za = 0.00135, so Z = 3.00 

then 
Si=l ri=l s2=.8 r2 = 3 

solution will require (n -1) = 1 derivative : 

+ Zo-, 
avip 

ckj = H{SJ 

cMp 

f (    "-1   Y 
V? ->;2 i-2>, 

V 7 ; V      ,=i    )j 

n-\ 

i=i      v  i=i   i=i m=i  ^ 

-,-iz 

<3t. 
50 (l -0.8 ) + 3-2 (yt1-l

2-32(l-)t1))[yt1-l
2+32(l-2^+A:1

2)] 

set derivative equal to zero and solve for k\: 

ckx 
= 10 + (60ifc, -54)[l0£2 -18/fc, +9] A = 0 

- 10-y/lOA:2-18*!+9 = 60*i ~54 

100 (lOfci2 - 18/ti + 9) = 3600fci2 - 6480k + 2916 

26h2-A6.8ki + 20.16 = 0 

using the quadratic formula : 

K 
46.8 + V46.82-4-26-20.16 

2-52 

ki = 1.086   or   0.7139 

then 
Jti = 0.7139    and    k2 = 0.2861 
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APPENDIX 3 

Example of Gradient Search Procedure (n = 2) 



Given: 
Hi=50 

assume 
s = .005 

then 
si=l 

Example of Gradient Search Procedure (n = 2) 

(adapted from Hillier/Lieberman) 

Gi = 2 (j.2 = 40 02 - 6 

Z« = 0.00135, so       Z = 3.00 

n=l s2=.8 r2 = 3 

M  = 10£, + 40 + 6^10^-18^+9 

dMp 

dkx 
= 10 + (60£t - 54)(l Okf -18£, + 9) 

begin at fci = 0.5 
dkx 

= -0.7331 

VM =(-0.7331) 

fci= 0.5 - t (-0.7331) = 0.5 + 0.7331f 

Mp = 10(0.5 + 0.73310 + 40 + 6^10(0.5 + 0.733 If)2 -18(0.5 + 0.733 If) + 9 

Mp = 45 + 7.33 It + 6V2.5 + 7.331f + 5.3744f2-9-13.1958f + 9 

M = 45 + 7.33 If + 6V5.3744f2-5.8648f + 2.5 

one-dimensional search to find min (t >0) t* of Mp 

tff 
= 7.331 + 

6 •0.5(l0.7488f-5.8648) 

V5.3744f2-5.8648f + 2.5 
= 0 

32.2464f-17.5944 
-7.331 

V5.3744f2-5.8648f + 2.5 

(322464f-17.5944)2 = (- 7.33l)2(5.3744f2 - 5.8648f + 2.5) 
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1039.8303r -1134.7121/ + 309.5629 = 288.8396r - 315.1955/ +134.359 

1509901t2 - 819.5166t +175.203 9 = 0 

t = 0.7994     or       t = 0.2918 

*i = 0.5 + 0.7331(0.7994)        or      k i = 0.5 + 0.7331( 0.2918) 
= 1.086 = 0.7139 

not feasible * feasible * 

dMp n.166 
Wp(07139) = _Z=I0.7I_ = _0.o02 

which is sufficiently close since s = .005. 

Therefore, h = 0.7139 and k2 = 0.2861. 
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APPENDIX 4 

Example of Direct Search Procedure 



Example of Direct Search Procedure 
(adapted from Nicholson) 

Given: 
m=50 

assume 
s = .01 

then 
Si=l 

Gi=2 

Z = 3.00 

n=l 

U2 = 40 

s2=.8 

a2 = 6 

r2 = 3 

M = 10*, +40+6^10^-18^+9 

begin at fa = 0.5 perturbation step size, 8 = 0.01 

*Base point, B« = 0.5 

Mp (B<°)) = 54.4868 
MP (B(°) + 8) = 54.4357       accept and let 

* check "double" step 

* check "double" step 

* check "double" step 

* check "double" step 

* check "double" step 

* begin again 

* check "double" step 

* check "double" step 

* check "double" step 

Mp (B(°) + 28) = 54.3861     accept 

MP (B(°) + 2(28)) = 54.2913 accept 

Mp (B(°) + 2(48)) = 54.1225 accept 

MP (B<°) + 2(88)) = 53.8894   accept 

MP (B(°) + 2(168)) = 54.0910   reject 

so T4« = 0.66 = B« 

MP (B« + 8) = 53.8724 accept 

Mp (B« + 28) = 53.8586     accept 

MP (BW + 2(28)) = 53.8411   accept 

MP (B« + 2(48)) = 53.851     reject 

so T2« = 0.70 = BW 

To« = 0.51 

Ti« = 0.52 

T2^ = 0.54 

T3(D = 0.58 

T4« = 0.66 

To« = 0.67 

Ti« = 0.68 

T2(2) = 0.70 
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* begin again 
Mp (BW + 8) = 53.8377 accept T0(3> = 0.71 

* check "double" step        MP (B<2) + 25) = 53.8381     reject 

so ToP) = 0.71 = BP) 

* begin again 
MP (B<3> + 6) = 53.8381 reject 

* since no step, try step back 
Mp (B<3> - 5) = 53.8411 reject 

* since step in either direction is worse, take current base as optimal 

B(3) = o.71 so fci = 0.71     k2 = 0.29 

Appendix 4 



APPENDIX 5 

Total Points of a Lattice Design 



Total Points of a Lattice Design 

n-> 2 3 4 5 6 7 8 9 10 
mJ- 
1 2 3 4 5 6 7 8 9 10 

2 3 6 10 15 21 28 36 45 55 
3 4 10 20 35 56 84 120 165 220 

4 5 15 35 70 126 210 330 495 715 
5 6 21 56 126 252 462 792 1287 2002 
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APPENDIX 6 

Example of a Lattice Design Search Procedure (n = 2) 



Example of a Lattice Design Search Procedure (n = 2) 

(j.2 = 40 02 = 6 

lattice order = 5 

S2 = .8 r2 = 3 

Given: 
m=50 ai=2 

assume 
s = .005 Z = 3.00 

then 
Si=l n=l 

M = 10Ä:, + 40 + 6^10^-18^+9 

* search for optimal fci beginning with endpoints at (0,1) 

MP(0) = 58 
MP(0.25) = 56.08 
MP(0.50) = 54.49 
MP(0.75) = 53.86 * 
MP(1) = 56 

* re-center search and continue ... 

MP(0.50) = 54.49 
MP(0.625) = 53.97 
Mp(0.75) = 53.86 * 
Mp(0.875) = 54.46 
Mp(l) = 56 

* re-center search and continue ... 

Mp(0.625) = 53.97 
Mp(0.6875) = 53.850 * 

Mp(0.75) = 53.86 
Mp(0.8125) = 54.054 
Mp(0.875) = 54.46 

* re-center search and continue ... 

Mp(0.625) = 53.97 
Mp(0.65625) = 53.8966 
Mp(0.6875) = 53.850 
Mp(0.71875) = 53.8378 * 
Mp(0.75) = 53.86 

j 
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* re-center search and continue 

MP(0.6875) = 53.850 
Mp(0.703125) = 53.83959 
Mp(0.71875) = 53.8378 
Mp(0.734375) = 53.8457 
MP(0.7500) = 53.86 

* 

* 

re-center search and continue 

Mp(0.703125) = 53.83959 
Mp(0.7109375) = 53.83753 
Mp(0.71875) = 53.8378 
Mp(0.7265625) = 53.8405 
Mp(0.734375) = 53.8457 

re-center search and continue ... 

Mp(0.703125) = 53.83959 
Mp(0.70703125) = 53.83827 
MP(0.7109375) = 53.83753 
Mp(0.71484375) = 53.8373702 
MP(0.71875) = 53.8378 

* 

* re-center search and continue ... 

Mp(0.7109375) = 53.83753 
Mp(0.712890625) = 53.8373763 
Mp(0.71484375) = 53.8373702 * 
MP(0.716796875) = 53.8375129 
Mp(0.71875) = 53.8378 

accuracy currently at 0.001953125, which is sufficient since 8 = .005. 

fa = 0.71484375  and k2 = 0.28515625 
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Distribution of Objective Function Values 



3£ 

Distribution of Objective Function Values 
(taken from Conley) 
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Disruption of a Monte Carlo Approach 



Disruption of a Monte Carlo Approach 

one extra, 
isolated value 

lower 0.0001 
tail 
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Pseudocode 



PSEUDOCODE 

This appendix gives the general code for each object of each form (i.e. how the 

program will respond to any action that the user might take). Note that "dimming" 

involves leaving a label or text box in sight while not allowing the user to access it. 

Also, the mouse "focus" is defined as the current cursor position on a form. 

1. Control Panel 

When the user clicks on "Optimize" 

Remove the "What-if' form from view, should it currently be active 

Show the "Optimize" form while also showing the Source Data form minimized 

When the user clicks cm "What-if 

Remove the "Optimize" form from view, should it currently be active 

Show the "What-if form while also showing the Source Data form minimized 

When the user clicks on "Exit" 

Exit the program 

2. Optimize 

When the firm loads 

Initialize the "Already" boolean variable to false 

Load the choices into the "Number of Sources" list box 

Initialize the box set to Number Sources = 2 

Load the choices into the "Probability" list box 

Initialize the box set to Probability = 0.01 

Call the "Dim Blend Proportions" procedure 

Call the "Un-dim Bounds" procedure 

When the user changes the Number of Sources using the list box 

Hide/Disable Source Data forms and Optimal Proportions (sources 3-10) 

Un-dim all upper bounds for sources 3-9 

j 
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Show appropriate Source Data forms and Optimal Proportions (sources 3-10) 

Show warning message about forms 8-9-10 if necessary (Already is false) and set 

Already to true 

When the user clicks on the "Cancel" button 

Close Source Data/Optimize forms 

Show the Control Panel form 

When the user clicks on the "Optimize" button 

Declare local variables 

Initialize variables 

Call appropriate optimization procedure (depending on number of sources) 

Display output values 

When the user changes the "Safe limit" 

Error-check to ensure that a number was input 

Show warning message if user did not input a numerical value 

Return mouse focus to the "Safe limit" text box 

3. "What-if Analysis 

When the form loads 

Initialize the "Already" boolean variable to false 

Load the choices into the "Number of Sources" list box 

Initialize the box set to Number Sources = 2 

Call the "Un-dim Blend Proportions" procedure 

Call the "Dim Bounds" procedure 

When the user changes the Number of Sources using the list box 

Hide/Disable Source Data forms (for sources 3-10) 

Show appropriate Source Data forms (for sources 3-10) 

Show warning message about forms 8-9-10 if necessary (Already is false) and set 

Already to true 
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When the user clicks on the "Cancel" button 

Close Source Data / What-if Analysis forms 

Show the Control Panel form 

When the user clicks on the "Compute" button 

Declare local variables 

Initialize variables 

Call appropriate compute procedure (depending on number of sources) 

Display output values 

When the user changes/finishes changing the Maximum Safety Value text box 

Error-check the input to ensure that it is a numerical value 

Return the mouse focus back to the Max Safety Value text box 

4. Source Data (10 forms, all identical) 

When the form loses the mouse focus 

Declare local variables 

Error-check all source data (that all values are numerical) 

Display an appropriate message if error exists 

When the user changes/finishes changing any of the following: blend proportion, mean output, 

output variation, upper bound, lower bound 

Declare local variables 

Error-check the appropriate data (to ensure that it is a numerical value) 

Check to ensure that numbers are feasible 

Display error message if necessary 

Return mouse focus to text box found in violation 

5. Procedures 

Dim Blend Proportions Procedure 

Dim the blend proportion label and text box on each Source Data form 

Dim Bounds Procedure 

Dim the bound frame, labels, and text boxes on each Source Data form 
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Un-dim Blend Proportions Procedure 

Un-dim the blend proportion label and text box on each Source Data form 

Un-dim bounds Procedure 

Un-dim the bound frame, labels, and text boxes on each Source Data form 

Max Procedure 

Set the maximum value to the first element in the array 

Compare each element in the array, setting it to maximum value if it is larger 

Min Procedure 

Set the minimum value to the first element in the array 

Compare each element in the array, setting it to minimum value if it is smaller 

Z-Alpha Procedure 

Select the appropriate case of the user-defined probability 

Assign the Z value corresponding to that probability 

Standard Normal Inverse Procedure 

Select the appropriate range of standardized Z values 

Assign the probability corresponding to that range of Z values 

Compute "What-if Analysis Procedure (9 procedures, each for a given number of sources) 

Declare local variables 

Initialize variables (including proportions (fc), means, and variances for each source) 

Determine if all proportions sum to 1, and if all data is non-negative 

If error exists, display appropriate message and exit subroutine 

Use a loop to calculate the blend's mean, variance, and standard deviation 

If the standard deviation is zero, then 

Set the probability of exceeding maximum safe value to either 0 or 1 

Otherwise, 

Calculate Z 

Call the Standard Normal Inverse procedure to find the probability 

Optimize Procedure (9 procedures, each for a given number of sources) 

Declare local variables 
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Initialize absolute bounds 

Initialize source means/ variances 

Initialize Z, current conditions, and check initial centroid feasibility 

Check upper bound feasibility (that the sum of upper bounds > 1) 

Set initial feasible solution 

If feasible, then initial solution = centriod point (all sources set to 1/NumSources) 

If not, then set all sources at upper bound until sum = 1 

Compute mean, standard deviation, and objective function value of initial solution 

For each iteration: 

For each sample: 

Set blend proportions (except last source) randomly within current bounds 

Set final blend proportion as (1-sum of others) 

Calculate objective function value, Mv 

Compare Mp to Mp*, replacing the optimal if Mp is less 

Repeat for all samples 

After all samples taken (i.e. end of iteration) reduce range of each blending 

source appropriately 

Repeat for all iterations 

Calculate final values to send as output (blend mean, standard deviation, objective 

function value) 
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Code for Optimization of 2 Sources 



Public Sub OptTwo(OptMean, OptMax, OptStandDev, OptProb, NumSources, OptProport( 
) 

As Single) 

, *** THIS PROCEDURE IS THE CODE FOR OPTIMIZING 2 SOURCES *** 

DECLARE LOCAL VARIABLES 
Dim i As Integer 
Dim i As Integer 
Dim k As Inteqer 
Dim Z As Single 

Dim AbsLow(l To 2) As Single 
Dim AbsUpd To 2) As Single 
Dim Mu(l To 2) As Single 
Dim Var_(l To 2) As Single 
Dim OptimalMp As Single 
Dim UBSum As Single 

Dim BlendMean As Single 
Dim BlendVar As Single 
Dim CurrLow(l To 2) As Single 
Dim CurrRanged To 2) As Single 
Dim CurrUpd To 2) As Single 
Dim CurrSolnd To 2) As Single 
Dim CurrSolnMp As Single 
Dim Sum As Single 
Dim Feasible As Boolean 

index for sample size 
index for iterations 
index for each source 
Z alpha value for computing max value 

absolute lower bounds for each source 
absolute upper bounds for each source 
mean output for each source 
variance for each source 
current optimal max value 
error-checks upper bounds 

current blend's mean 
current blend's variance 
current lower bound for each source 
current feasible range for each source 
current upper bound for each source 
current solution's proportions 
current solution's max value 
determines final source's proportion 
determines initial centroid feasibility 

.Text 

.Text 

er 

' INITIALIZE VARIABLES 
' initialize absolute bounds 

For k = 1 To NumSources 
AbsLow(k) = 0 

Next k 
AbsUpd) = frmSourceOne!txtSourceOneUB 
AbsUp(2) = frmSourceTwo!txtSourceTwoUB 

' initialize source means/variances 
Mud) = frmSourceOne!txtSourceOneMean.Text 
Mu(2) = frmSourceTwoitxtSourceTwoMean.Text 
If (frmSourceOne!optSourceOneSD.Value = True) Then 

Var(l) = (frmSourceOneltxtSourceOneVar.Text) A 2 
Else 

Var(l) = (frmSourceOneltxtSourceOneVar.Text) 
End If 
If (frmSourceTwo!optSourceTwoSD.Value = True) Then 

Var(2) = ffrmSmirripTwo! txtSourceTwoVar. Text) A 2 
Else 

Var(2) 
End If 

' initialize 
Feasible = 
Z = ZAlpha 
UBSum = 0 
For k = 1 To NumSources 

CurrLow(k) = AbsLow(k) 
CurrUp(k) = AbsUp(k) 
UBSum = UBSum + AbsUp(k) 
If (AbsUp(k) < (1 / NumSources)) Then 

Feasible = False 
End If 

Next k 
' check upper bound feasibility 

If (UBSum < 1) Then 
MsgBox "Upper bounds are infeasible; must sum to at least 1 

Bounds" 
Exit Sub 

(frmSourceTwo!txtSourceTwoVar.Text; 

= (frmSourceTwo!txtSourceTwoVar.Text) 

Z, current conditions; check centroid feasbility 
= True 
(OptProb) 

48, "Upp 



End If . 
' set initial feasible solution; compute corresponding ofcnective function val 

ue 
Sum = 0 
BlendMean = 0 
BlendVar = 0 
For k = 1 To NumSources 

If (Feasible = True) Then 
OptProport(k) = 1 / NumSources 

Else 
OptProport(k) = AbsUp(k) 
Sum = Sum + OptProport(k) 
If (Sum > 1) Then 

Sum = Sum - OptProport(k) 
OptProport(k) = 1 - Sum 
Sum = Sum + OptProport(k) 

End If 
End If 
BlendMean = BlendMean + (Mu(k) * OptProport(k)) 
BlendVar = BlendVar + ((OptProport(k) A 2) * Var(k)) 

Next k 
OptimalMp = BlendMean + Z * Sqr(BlendVar) 

' CONDUCT OPTIMIZATION 
For i = 1 To Numlterations 

For i = 1 To SampleSize 
' set blend proportions randomly 

Sum = 0 
For k = 1 To (NumSources - 1) 

CurrUp(k) = Min(CurrUp(k), 1 - Sum) 
CurrRancre(k) = CurrUp (k) - CurrLow(k) 
CurrSoln(k) = CurrLow(k) + (CurrRanqe(k) * Rnd) 
Sum = Sum + CurrSoln(k) 

Next k 
' set final source proportion as 1 - (sum of others) 

CurrSoln(NumSources) = 1 - Sum 
' calculate objective function value (Mp) 

BlendMean = 0 
BlendVar = 0 
For k = 1 To NumSources 

BlendMean = BlendMean + (Mu(k) * CurrSoln(k)) 
BlendVar = BlendVar + ((CurrSoln(k) A 2) * Var(k)) 

Next k 
CurrSolnMp = BlendMean + Z * Sqr(BlendVar) 

' compare to current optimal 
If CurrSolnMp <= OptimalMp Then 

OptimalMp = CurrSolnMp 
For k = 1 To NumSources 

OptProport(k) = CurrSoln(k) 
Next k 

End If 
Next i 

* after all samples taken (i.e. end of iteration) reduce ranqe of each 
' blendinq source appropriately 

For k = 1 To NumSources 
CurrLow(k) = Max(OptProport(k) - 2 A (-1-1), AbsLow(k)) 
CurrUp(k) = Min(OptProport(k) + 2 A (~i - 1), AbsUp(k)) 

Next k 
Next i 

' CALCULATE VALUES TO SEND AS OUTPUT 
OptMean = 0 
BlendVar = 0 
For k = 1 To NumSources 

If OptProport(k) < 0 Then 
OptProport(k) = 0 

End If 



OptMean = OptMean + (Mu(k) * OptProport(k)) 
BlendVar = BlendVar + ((OptProport(k) A 2) * Var(k)) 

Next k 
OptStandDev = Sqr(BlendVar) 
OptMax = OptMean + Z * OptStandDev 

End Sub 



APPENDIX 11 

Code for "What-if' Analysis for 2 Sources 



Public Sub WIComputeTwo(NumSources As Inteqer, MaxSafeVal As Sinqle, 
BMean As Sinqle, BStandDev As Sinqle, WIProb As Sinqle) 

r *** THIS PROCEDURE IS THE CODE 
'     A "WHAT-IF" ANALYSIS FOR 2 

FOR CALCULATING 
SOURCES *** 

Blend Proportions 
Source Mean 
Source Variation 
Determines Probability 
Detects errors in Source Data 
Detects error in Blend Proportion 
Detects error in Source Mean 
Detects error in Source Variation 
Sums the Blend Proportions 
Blend Variance 

' Declare Local Variables 
Dim i As Inteqer 
Dim Ki(l To 2) As Sinqle 
Dim Mu(l To 2) As Sinqle 
Dim Var(l To 2) As Sinqle 
Dim Z As Sinqle 
Dim NumericErr As Boolean 
Dim ProportErr As Boolean 
Dim MeanErr As Boolean 
Dim VarErr As Boolean 
Dim ProportSum As Sinqle 
Dim BVariance As Sinqle 

' Initialize Variables 
ProportErr = False 
MeanErr = False 
VarErr = False 
ProportSum = 0 

Kid) = frmSourceOne! txtSourceOneKi.Text 
Ki(2) = frmSourceTwo!txtSourceTwoKi.Text 

Mud) = frmSourceOne ! txtSourceOneMean. Text 
Mu(2) = frmSourceTwo!txtSourceTwoMean.Text 

If (frmSourceOneloptSourceOneSD.Value = True) Then 
Var(l) = (frmSourceOne!txtSourceOneVar.Text) " 2 

Else 
Var(l) = (frmSourceOne!txtSourceOneVar.Text) 

End If 
If (frmSourceTwoJoptSourceTwoSD.Value = True) Then 
Var(2) = (frmSourceTwo!txtSourceTwoVar.Text) A 2 

Else 
Var(2) = (frmSourceTwo!txtSourceTwoVar.Text) 

End If 

• Error-Check Variables (Probs sum to 1; non-neqative values) 
For i = 1 To 2 

If Ki(i) < 0 Then 
ProportErr = True 

End If 
If Mu(i) < 0 Then 

MeanErr = True 
End If 
If Var(i) < 0 Then 

VarErr = True 
End If 
ProportSum = ProportSum + Kid) 

Next i 

' If Error Exists, Display Appropriate Messaqe and Exit Subroutine 
If ((ProportErr) Or (ProportSum <> 1)) Then _        n 
MsqBox "Proportions must be non-neqative and sum to 1. Try aqain.", 48, ' C 

annot Compute" 
Exit Sub 

End If 
If MeanErr = True Then 
MsqBox "Source means must be non-neqative. Try aqain.", 48, "Cannot Comput 

e" 
Exit Sub 



End If 
If VarErr'= True Then 
MsqBox "Source variations must be non-neqative. Try aqain.", 48, "Cannot C 

ompute" 
Exit Sub 

End If 

' Calculate Values 
For i = 1 To 2 
BMean = BMean + Ki(i) * Mu(i) 
BVariance = BVariance + (Ki(i) A 2) * (Var(i)) 

Next i 
BStandDev = Sqr(BVariance) 
If BStandDev = 0 Then 

If BMean > MaxSafeVal Then 
WIProb = 1 

Else 
WIProb = 0 

End If 
Else 

Z = (MaxSafeVal - BMean) / BStandDev 
Call SNormInv(Z, WIProb) 

End If 

End Sub 



APPENDIX 12 

Validation Data 



n = 3 

Hi = 50 

H3 = 45 

Validation Data 

ci2 = 4 
Ö22 = 36 
CJ32 = 12 

&i = 1.00 
b2 = 1.00 
b3 = 1.00 

Mv* = 52.16074 

experimental runs 
1) 52.16074 
2) 52.16074 
3) 52.16074 
4) 52.16074 
5) 52.16074 

% error = (52.16074 - 52.16074) / 52.16074 
= 0.00% 

n = 7 

m = 50 ai2 = 4 fa = 1.00 
H2 = 40 a2

2 = 36 fa = 1.00 
M3 = 45 CJ32 = 12 b3 = 0.09 
\u = 51.5 a4

2 = 0.01 fa = 1.00 
^ = 47 as2 = 20 fcs = 1.00 
M* = 51 G62 = l be = 1.00 
\i7 = 42 0^ = 27 fa = 1.00 

Mv* = 51.17793 

experimental runs 
1) 51.19986 
2) 51.28685 
3) 51.23554 
4) 51.31067 
5) 51.28316 

% error = (51.263216 - 51.17793) / 51.17793 
= 0.17% 

Appendix 12 



n = 10 

tu = 50 Gi2 = 4 fci = 1.00 
112 = 40 o2

2 = 36 b2 = 1.00 
|i3 = 45 a3

2 = 12 &3 = 1.00 
IM = 43 CT42 = 17 fa = 1.00 
(i5 = 47 G52 = 21 fc5 = 1.00 
H6 = 41 G62 = 14 b6 = 0.03 
(17 = 42 0^ = 33 b? = 1.00 
Us = 49 as2 = 7 b8 = 1.00 
H9 = 48 G92 = 11 b9 = 1.00 

(j.10 = 46 Gio2 = 6 610 = 1.00 

M/ = 48.92204 

experimental runs 
1) 48.92244 
2) 49.30835 
3) 49.02160 
4) 48.92251 
5) 48.93250 

% error = (49.02148 - 48.92204) / 48.92204 
= 0.20% 
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